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Abstract Two Arabidopsis xylosyltransferases, designated
RGXT1 and RGXT?2, were recently expressed in Baculovirus
transfected insect cells and by use of the free sugar assay
shown to catalyse transfer of D-xylose from UDP-x-D-xylose
to L-fucose and derivatives hereof. We have now examined
expression of RGXT1 and RGXT2 in Pichia pastoris and
compared the two expression systems. Pichia transformants,

This work was supported by the Danish National Research Foundation
and The Danish Research Agency

B. L. Petersen (D<) - I. Damager * K. Faber - Z. Yang - P. Ulvskov
Cell Wall Biology and Molecular Plant Virology,

Institute of Genetics and Biotechnology,

Faculty of Agricultural Sciences,

University of Aarhus and Centre for Pro-Active Plants (VKR),
Thorvaldsensvej 40,

Frederiksberg 1871, Denmark

e-mail: b.petersen@dias.kvl.dk

J. Egelund

Department of Molecular Biology, Copenhagen Biocenter,
University of Copenhagen,

Building 4-2-21, Ole Maalges Vej 5,

Copenhagen 2200, Denmark

J. Kriiger Jensen

Department of Plant Biology, University of Copenhagen,
40 Thorvaldsensvej,

Frederiksberg 1871, Denmark

E. P. Bennett

Department of Odontology, Glycobiology Group, 24.5.33,
University of Copenhagen,

Norre Alle 20,

Copenhagen 2200, Denmark

H. V. Scheller

Joint BioEnergy Institute, Feedstocks Division,
Lawrence Berkeley National Laboratory,

5885 Hollis St.,

Emeryville, CA 94608, USA

expressing soluble, secreted forms of RGXT1 and RGXT2
with an N- or C-terminal Flag-tag, accumulated recombinant,
hyper-glycosylated proteins at levels between 6 and 16 mg
protein * L™ in the media fractions. When incubated with
0.5 M L-fucose and UDP-D-xylose all four RGXTI and
RGXT2 variants catalyzed transfer of D-xylose onto L-
fucose with estimated turnover numbers between 0.15 and
0.3 sec!, thus demonstrating that a free C-terminus is not
required for activity. N- and O-glycanase treatment resulted
in deglycosylation of all four proteins, and this caused a loss
of xylosyltransferase activity for the C-terminally but not the
N-terminally Flag-tagged proteins. The RGXT1 and RGXT2
proteins displayed an absolute requirement for Mn®" and
were active over a broad pH range. Simple dialysis of media
fractions or purification on phenyl Sepharose columns
increased enzyme activities 2-8 fold enabling direct verifi-
cation of the product formed in crude assay mixtures using
electrospray ionization mass spectrometry. Pichia expressed
and dialysed RGXT variants yielded activities within the
range 0.011 to 0.013 U (1 U=1 nmol conversion of substrate
« min" « pl medium™) similar to those of RGXTI and
RGXT2 expressed in Baculovirus transfected insect Sf9
cells. In summary, the data presented suggest that Pichia is
an attractive host candidate for expression of plant
glycosyltransferases.
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Abbreviations

CAZy Carbohydrate Active EnZyme
Ccw cell wall

Csl Cellulose synthase-like

CPM counts per minute

His histidine
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GT glycosyltransferase

ESI-MS electrospray ionization mass
spectrometry

F-sRGXT1/2/3  N-terminally Flag-tagged soluble
Rhamnogalacturonan Xylosyltransferase

1,or2 or3

RG-II rhamnogalacturonan II

sRGXT1/2-F Rhamnogalacturonan Xylosyltransferase
1 or 2 soluble with a C-terminal Flag-Tag

TMD trans membrane spanning domain

XylT xylosyltransferase

Introduction

A main challenge in the post genomic era is the assignment of
function to open reading frames with unknown function. The
plant cell wall (CW) consists of numerous complex carbohy-
drate polymers and glycoproteins. Although the sugar
composition of the plant CW components is largely resolved,
less is known with respect to the corresponding biosynthetic
machinery. The Carbohydrate Active EnZyme (CAZy)
database [1-3], (http://afmb.cnrsmrs.fr/CAZY/index.html)
currently lists 448 sequences for Arabidopsis thaliana as
proven or putative glycosyltransferases (GTs). CAZy classi-
fies GTs into 91 families, 40 of which are represented in
Arabidopsis. So far, thirteen non-cellulosic/callosic CW GT
activities have been successfully heterologously expressed
and biochemically characterized (Cf. reviews by e.g. [4-7]).
The GTs responsible for the synthesis of cellulose and
callose are multi membrane spanning glucan synthases
located at the plasma membrane. The cellulose synthases
belong to family GT2, which also comprises the cellulose
synthase like genes, Csl. Four genes from this group have
been shown by heterologous expression and biochemical
assay to encode (3-1,4-mannan synthases [8, 9]. One gene
product was shown to possess 3-1,4-glucan synthase activity
in raw cell extracts [10] and two barley CslF genes, were
shown to confer production of mixed linkage (1-3;1-4)-3-D-
glucan polymers when stably expressed in A4. thaliana [11].

The GTs responsible for the synthesis of the CW polymers
hemicellulose and pectin, and of the various CW-glycoproteins
are thought primarily to be Golgi localized, where the majority
of these GTs adopt the type II structure comprising a short N-
terminal cytoplasmic tail followed by a single trans membrane
spanning domain (TMD), and facing the lumen a stem region
of varying length, followed by the large C-terminal globular
domain, possessing the catalytic activity.

Of the estimated more than 200 type II GTs believed to
participate in plant CW synthesis, nine, eight from A.
thaliana and one from fenugreek, have been successfully
expressed with the accompanying in vitro activity demon-
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strated [11-21]. Three of the GTs were expressed in P.
pastoris, and the remaining GTs in African Green Monkey
Kidney Cells (COS cells), in the human embryonic kidney
cell line HEK293, in baculovirus transfected insect cells,
and in Nicotiana benthamiana (see Table 1). The rather
limited success of heterologously expressing GTs may be
ascribed to mismatch between biochemical assay and the
native activity or failure of the expressed protein to
accumulate to detectable levels, incorrect folding, or
improper secondary modifications.

Expression systems that rely on higher plant cells may
overcome some of these problems. The GT can be targeted
in its full length, membrane-anchored form to the Golgi
vesicles. This approach largely eliminates problems with
incorrect folding and inadequate posttranslational modifi-
cations, and the assay may rely on required but unidentified
endogenous factors and even utilize acceptor molecules
present in the GT containing microsomal fraction. Back-
ground activities may be an issue in a higher plant system,
and preparing stable transformants is a slow process, often
too slow to be practical for screening purposes. A transient
expression system using Agrobacterium mediated transient
transformation of N. benthamiana [22] shows some
promise of solving the low through-put issue with stable
transformants (JK Jensen, BL Petersen, N Geshi, P
Ulvskov, HV Scheller, unpublished results).

Expression in prokaryotes, having no support for post-
translational processing, represents the other extreme. The
relative high number of successfully expressed GTs of CAZy
GT family 1 in E. coli [23] may primarily be ascribed to the
fact that this GT family incorporates soluble enzymes acting
on relatively low molecular mass acceptor substrates.
Eukaryotic hosts are usually considered for human and other
mammalian gene products, see e.g. review [24], and none
have emerged as the ideal system, and likewise for higher
plant gene products, all of the relatively few expression
systems used at present are far from guaranteeing production
of correctly folded and processed gene-products.

In recent years, the methylotropic yeast P. pastoris has
become increasingly popular as expression host (for a com-
prehensive introduction to expression of heterologous proteins
in P. pastoris see reviews [25, 26] and list of proteins ex-
pressed in P, pastoris (http://faculty.kgi.edu/cregg/index.htm)).
In the present study we have expressed two A. thaliana -
1,3-xylosyltransferases, RGXT1 and RGXT2, implicated in
the xylosylation of the internal fucose moiety of the A-chain
of pectic rhamnogalacturonan I (RG II) [19], in P. pastoris
and made a first characterization of the enzymes. Using the
P, pastoris system, we have addressed a number of problems
to consider with any eukaryotic expression system: post
translational modification (especially glycosylation), activity
in relation to the introduction and placement of tags, and
the occurrence of interfering substances in the medium, a
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Table 1 Heterologously expressed non-cellulosic/callosic plant CW biosynthetic GTs with proven biochemical activity

Enzyme Identifier Monosaccharide ~ CW Enzyme CAZY Portion of Host organism Reference
transferred component topology  GT fam  GT expressed
AtFT1 L-fucose XyG Type 11 37 FL COS cells [12, 13]
GalT of fenugreek D-galactose GM Type 11 34 FL and S Pichia pastoris [14]
(secreted)

AtXTI & -2 D-xylose XyG Type I 34 FL Pichia pastoris, Drosophila  [15, 16]
S2 and Baculo virus Sf21
cells

AtMur-3 D-galactose XyG Type II 47 FL Pichia pastoris [17]

ManS of Gua and AtCsl42,7,9 ~ D-mannose GM MMS 2 FL soybean somatic embryos [8, 9]
and Drosophila (S2) cells

mixed linkage glucan syntase D-glucose Mixed MMS 2 FL Arabidopsis thaliana [11]

OsCSLF2 and OsCSLF4 linkage glucan
AtGAUTI D-galacturonic HGA Type 1T 8 FL HEK293 [18]
acid
AtRGXTI, -2 & -3 D-xylose RG-II Type I 77 S Baculo virus Sf9 cells, [19, 20]
(secreted) Pichia pastoris
XvGS of Tropaeolum D-glucose XyG MMS 2 FL Pichia pastoris [10]
majus and AtCSLC4
XGD1 D-xylose XGA Type 1T 47 FL N. benthamiana [21]

The table summarizes non-cellulosic/callosic CW GTs, which have been heterologously expressed with the enzymatic activity demonstrated.
While the full length AtMUR3 [17] and AtXT1 [15] proteins were expressed with a C-terminal and a N-terminal poly histidine (His) tag,
respectively, the soluble secreted versions of RGXT1 & RGXT2 contained an N-terminal His(6) tag followed by a T7 tag [19] and the soluble
secreted version of RGXT3 contained an N-terminal Flag-tag [20]. All other proteins were expressed either as full length or soluble proteins
without tags

At Arabidopsis thaliana;HEK293 human embryonic kidney cell line HEK293;Drosophila S2 Drosophila Schneider 2;COS cells African Green
Monkey Kidney Cells;CSL cellulose synthase like;FL Full Length;F7T] fucosyltransferase-1;GalT galactosyltransferase;GAUT galacturonosyl-
transferase;GAX glucuronoarabinoxylan;HGA homogalacturonan;RG-II rhamnogalacturonan II;GM galactomannan;ManS mannan backbone
syntase;MMS Multi Membrane Spanning;Mur-3 ‘Muros’-3;0s Oryza sativa;Type II Type 11 membrane spanning protein;S Soluble;RGXT
RhamnoGalacaturonan XylosylTransferase;Sf21 Spodoptera frugiperda 21 cells;XGA xylogalacturonan;XyG xyloglucan;XyGS xyloglucan
syntase;X7T/ and -2 xylosyltransferase-1 and -2

problem that applies to many liquid culture-based systems.
On a pl to pl medium basis the P, pastoris system provides
similar activity yields as compared to the baculovirus insect
cell system, thus making the P. pastoris system a highly
competitive system to be used e.g. in large-scale gene
discovery efforts.

Materials and methods
Prediction servers

Prediction of N-glycosylation sites and TMDs in RGXT1
(At4g01770), RGXT2 (At4g01750), and RGXT3
(At1g56550), were done using the NetNGlyc (using 0.5
as threshold) and TMHHM servers at Center for Biological
Sequence Analysis (CBS, http://www.cbs.dtu.dk).

Cloning of the soluble parts of RGXT1 and RGXT2
in to the pPiczaA vector

Full length RGXT1 and RGXT2 cDNAs were obtained and
cloned as described in [19]. Fragments corresponding to the

soluble forms of the proteins, i.e. amino acid residues 56-
361 of RGXTI! and 53-367 of RGXT2, were PCR
amplified using the following five primer-sets:

PF-sRGXT2-5: 5'-gaattcATGGATTACAAGGAC
GACGACGACAAGcacgtgcecttggeecggateteetttgtt-3,
PF-sRGXT2-3: 5'-gcggccgcettactgeaatttcectaatgga-3’;
PsRGXT2-F-5: 5’-gaattcccttggeecggatetectttgtt-3°,
PsRGXT2-F-3: 5’-gcggccgcttaCTTGTCG
TCGTCGTCCTTGTAATCCATcacgtgctgeaatttcce
taatgga-3’,

PF-sRGXTI-5: 5’-cacgtgtctcccttattcctgtttcca-3°,
PF-sRGXTI-3: 5’-gcggccgcttactctaatttcectaatggag-3°
PsRGXTI1-F-5: 5’-gaattctctcecttattectgtttee-3°,
PsRGXTI1-F-3: 5’-cacgtgctctaatttccctaatggag-3;

where capital letters encode the Flag-Tag CMDYKDDDDK’,
Invitrogen), the underlined sequences denote Pmll, Notl and
EcoRI restriction sites and s and F denote the soluble part of the
protein and Flag-tag, respectively (as read from the N-terminus
to the C-terminus of the fusion proteins). Initially, F-sSRGXT2
and SRGXT2-F, containing an N-terminal and a C-terminal Flag-
tag, respectively, were PCR amplified, subcloned, sequenced
and finally cloned into the pPiczaA vector (Invitrogen) using the
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5’ and 3’ restriction sites, EcoRI and Notl, respectively,
introduced by the primerpair PF-sSRGXT2-5 & PF-sRGXT2-3
or the primer-pair PSRGXT2-F-5 & PsRGXT2-F-3, producing
the constructs F-sSRGXT2-pPiczaA and sSRGXT2-F-pPiczaA,
respectively. Subsequently, F-sSRGXT1-pPiczxA and sSRGXT]1-
F-pPiczA (sRGXT1 with either an N-terminal or C-terminal
fused Flag-tag) were made by replacing the Pmll-Notl (5’-3)
insert or the EcoRI-PmlI (5°-3’) insert of F-sSRGXT2-pPiczacA
and sSRGXT2-F-pPiczaA, respectively. PCR was performed in
50 pl reaction volumes using the Expand High Fidelity system
(Beohringer Ingelheim, Copenhagen, Denmark) with the cycle
parameters: 3 min 97°C (Denaturation), 30-35 cycles: 94°C for
30s, 50°C for 30 s and 68°C for 1° followed by 12 min at 72°C.
All PCR amplifications were cloned into the pCR®2.1 vector
using the TOPO-TA cloning kit (Invitrogen) and the authenticity
of the inserts was verified by sequencing, before the final cloning
into the end vector (pPiczA with/without an N-terminal or C-
terminal Flag- tag).

Cloning and expression of F-sSRGXT3 are described in [20].

Scoring, growth and induction of the highest expressed P
pastoris transformants

Linearized DNA of the constructs F-sRGXT1-pPiczaA,
SRGXT1-F-pPiczaA, F-sRGXT2-pPiczaA and sRGXT2-F-
pPiczaA were transformed into the P. pastoris KM71H strain
by electroporation, plated on yeast extract peptone dextrose
sorbitol plates containing zeocin (100 g » mL™), and incubated
for 2-3 days at 30°C as described in Invitrogen Life
technologies: The Pichia pastoris Expression system. In order
to score the highest expressing transformants, 10 transformants
of each construct were grown in 5 ml cultures and expressed
as described below for two days at 30°C, where after the
medium fraction was subjected to western blot analysis.

In expression studies, 10 mL of buffered complex glycerol
medium supplemented with 100ug « mL™" zeocin were
inoculated with the highest expressed transformant of each
construct and grown in an incubator at 28°C, 280-300 rpm,
ON until the ODg reached a value between 2 and 6. Cells
were harvested by centrifugation and re-suspended in buffered
50 mL complex methanol medium to an ODgyy of 1.0 in
250-mL Erlenmeyer flasks. Incubation was continued for a
total of 120 h at 20°C, 280-300 RPM, and at 24 h intervals,
methanol was added to 0.5% (v/v) final concentration. At each
time point 1 ml fractions were collected and the media
fractions were recovered by centrifugation, frozen in liquid N,
and stored at -80°C. At day five (120 h of induction) cells
were pelleted by centrifugation and the supernatant (medium
fraction) was collected for further processing or analysis (see
below). The presence of 1| mM DTT in xylosyltransferase
assays (see below) resulted in slightly but reproducibly
reduced activities (data not shown). More than one freeze
thaw cycle resulted in detectable loss of activity.
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SDS-PAGE, immunoblotting analysis, and quantifications
of protein levels

Proteins were dissolved in NuPAGE Antioxidant and
NuPAGE Loading Sample Buffer (LDS) from Invitrogen
(1 : 1), boiled for 510 min, spun down and separated on SDS—
containing 4-12% polyacrylamide Tricine gels (Invitrogen)
using the MOPS-SDS system (Invitrogen) as running buffer.
Electrophoresis was performed with the settings: 200 V,
150 mA, 200 W, 1 h. Molecular markers were the SeeBlue
Plus2 Pre-Stained Standard (Invitrogen) and MagicMark XP
Western Standard (Invitrogen). Proteins were transferred to
activated (99.9% EtOH) polyvinylidene difluoride (PVDF)
membranes (0.2um pore size, Invitrogen) using semi-dry
electro blotting (settings: 200 V, 150 mA, 200 W, 1 h).
Following transfer the PVDF membranes were washed 2 x
ddH,0, 2-3’, blocked in 1 x TBS 3% skimmed milk powder
(SKP), 30°, washed in 1 x Tris Buffered Saline (I x TBS),
pH8.0, probed with mouse Anti Flag M2 monoclonal
Antibody (Sigma Aldrich, Denmark) in a 1:1000 dilution in
1 X TBS 3% SKP overnight at 4°C under mild shaking,
washed in 1 x TBS, probed with rabbit anti mouse
peroxidase-conjugated secondary antibody (DAKO, Copen-
hagen, Denmark) in a 1:1,000 dilution in 1 X TBS 3% SKP
and washed 8x3’ in 1 x TBS with 0.05% Tween20 and
finally placed in 1 x TBS. Chemi-luminiscence was
monitored using the Super Signal Enhanced Chemical
Luminiscence (ECL, Copenhagen, Denmark), which was
visualized on a BioSpectrum (UVP Biolmaging Systems,
Upland, California, USA) and semi quantified using the
LabWorks program. Amount of Flag-tagged GTs were semi-
quantified by comparison to standard curves of dilution
series of 5 ng, 10 ng, 20 ng and 30 ng Amino-terminal
Bovine Serum Albumin Protein Met-FLAG (BAP) (468 a.a.,
49.4 kDa) from Sigma. Expression levels of secreted T7-
tagged RGXT1 and RGXT2 (39.9 and 40.7 kDa, respec-
tively) in the baculovirus system were estimated by
co-electrophoresis and blotting of a dilution series of purified
T7 tagged Mucl 3 1/2 tandem repeat (10.2 kDa). Immuno
detection of the T7-epitope was carried out using a mouse
monoclonal antibody directed against the T7-tag conjugated
to horseradish peroxidase (Cat. No. 69048-3, Novagen,
Merck KGaA, Darmstadt, Germany) in a 1:1000 dilution.
An SDS-PAGE gel including both the BAP and the Mucl-
standard series was run and Coomassie stained to verify the
estimated amounts. Total protein in the media fractions was
estimated using the Bradford Reagent (Sigma).

Purification of expressed proteins
In order to identify the optimal (NH,4),SO, concentration

for binding to phenyl Sepharose, 3 x 5 ml F-sRGXT2
containing media were incubated with 25%, 50% 75%
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saturated (NH4),SOy, respectively, for 1-2 h on ice. The
mixtures were spun down (5000%g, 4°C, 10 min) and the
three supernatants were applied on columns containing
300ul CL-4B phenyl Sepharose® (GE Healthcare, Buck-
inghamshire, UK). Each column was washed with five
column volumes of 50% (NH,4),SO,4 and eluted with 3 x
1.5 ml 2.5 mM ammonium formate, pH7.6. Eluates and
precipitates were subjected to SDS-PAGE and analyzed by
immunoblotting. From this experiment it was evident that
F-sRGXT?2 precipitates at (NH,4),SO, saturation higher than
50% and lower than 75% and that the phenyl Sepharose
binds F-sRGXT2 in 50% saturated (NH,4),SOj,. In scaled up
experiments 16 ml GT containing medium and 16 ml 100%
(NH4),SO, were mixed and applied to 2 ml phenyl
Sepharose, which was eluated in 2 x 2 ml 2.5 mM
ammonium formate, pH7.5. Crude media fractions (5 —
10 ml) and phenyl Sepharose eluates were dialyzed in 5 L
25 mM ammonium formate, pH7.5, using Medicell MWCO
12-14000 Da dialysis bags (KEBO Lab) for 3 h at 4°C, and
continued overnight with 5 L of fresh dialysis buffer.

Deglycosylation

Purified and dialysed proteins (9.3png F-sRGXT1, 7.1pug
sRGXTI1-F, 10.6pg F-sRGXT2 and 6.5pg sRGXT2-F)
were mixed with 20ul 5 X incubation buffer (0.25 M
sodium phosphate, pH7), 2 ul Peptide: N-glycanase F [5 U ¢
ml'] and 2l O-glycanase [1.25 U » ml'] in total volumes
of 100ul according to Glyko Reactionlab AS (Lynge,
Denmark). Two aliquots of 33pul of each mixture were
incubated 20 h at 25°C and 37°C, respectively. Aliquots
(10ul) of each sample were used in the xylosyltransferase
assay using 0.5 M L-fucose as acceptor. Aliquots (2ul) of
the remaining samples were subjected to immunoblotting as
described above.

The xylosyltransferase assay

Standard xylosyltransferase assay was carried out according
to the general free sugar assay [28] in 50 ul reaction mixtures
containing 25 mM ammonium formate, pH7.5, 10 mM
MnCl,, 0.75ul UDP-a-['*C]-D-xylose (9.8 GBg/mmol,
264 mCi/mmol, 10 nCi/pul, 0.75ul ~ 12-14000 CPM)
(NEN, Boston MA, USA), 100uM UDP-«-D-xylose
(CarboSource (Complex Carbohydrate Research Center,
Athens, Georgia, USA)), 0.5 M L-fucose and 5pul, except
when otherwise stated, of the enzyme in question, which
were incubated for 1 h at 30°C. Unincorporated UDP-«-
['*C]-D-xylose and UDP-x-D-xylose were removed by
passing the reaction mixture through a Dowex-1 anion
exchanger (Sigma-Aldrich Denmark A/S) and the radioac-
tivity in the flow through was determined by scintillation
counting.

Electrospray ionization mass spectrometry of assay product

ESI-MS data were obtained by use of a ThermoFinnigan
connected to an AXP-MS, Dionex. The mass spectrometer
was run in positive mode with 0.1% HCOOH in 50 mM
NaCl solution. Samples were prepared as described under
xylosyltransferase assay, but without use of UDP-a-['*C]-
D-xylose and omitting the anion exchange step.

Mn** and pH dependency

Ammonium formate stock solutions (250 mM) with pHs in
the range from pH3 to 11 were prepared and standard
xylosyltransferase assays were incubated at 30°C for
60 min. The pH of each assay was monitored in parallel
by probing the assay mixtures on pH strips directly after
incubation and confirmed to be identical to the pH of the
stock solutions.

Results

Detection of heterologously expressed and secreted protein
in P. pastoris

In order to enable estimation of expression levels and to
evaluate effect of tags, which may influence targeting,
folding and activity, a Flag-tag CMDYKDDDDK’) was either
fused to the N-terminus of the «-factor signal sequence of the
pPiczacA vector or inserted into the C-terminal part of the
polylinker of pPiczaA (Fig. 1). Using the two modified
vectors, constructs expressing the N-terminal Flag-tagged
soluble proteins F-sRGXT1, F-sRGXT2 and F-sRGXTS3,
and soluble C-terminal Flag-tagged proteins, SRGXT1-F and
sRGXT2-F, were prepared (as read from the N-terminus to
the C-terminus of the fusion proteins). RGXT3 is a new
member of the RGXT family (68 and 75 % identity to RGXT1
and RGXT2, respectively), which recently was shown to
possess xylosyltransferase activity with similar acceptor
substrate specificities as those reported for RGXT1 and
RGXT?2 [20].

Expression levels and estimated turnover rates

Generation and identification of the highest expressing
transformants, growth conditions and induction of protein
expression and harvesting of secreted recombinant protein
are described in the Material and Methods section.
Different temperature schemes and length of induction
period were tested (data not shown). The highest expression
levels, as evidenced by immunoblotting, were obtained
when the P. pastoris transformants were grown at 20°C
with expression periods of up to 120 h (data not shown).

@ Springer
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a-ss Kex2 Flag - Tag

PmlI

TMD
o

FLAG
=

PmlI

...... gaagctgaattec.........cac|gtgatggattacaaggacgacgacgacaagtag..

E A|E F H
a-ss Kex2 SP

Fig. 1 Design of secreted Flag-tagged soluble protein. A Flag-tag
(MDYKDDDDK?’) enabling N- or C-terminal tagged fusions to the
gene in question was introduced into the polylinker of the pPiczaA
vector via the introduced Pmll restriction site (CAC|GTG). Kex2 and
Ste2 subsiding the o-factor signal sequence designate proteolytic

Using this scheme, N-terminal Flag-tagged F-sRGXT1 and
F-sRGXT2 accumulated to levels of about 11 and 16 mg
protein « L' in the media fractions, respectively (Fig. 2).
When incubated with 0.5 M L-fucose as the acceptor
substrate and UDP-«-D-xylose as the donor substrate,
crude media fractions containing F-sRGXT1 and F-
sRGXT?2 were shown to catalyze the transfer of D-xylose
onto L-fucose with estimated catalytic turnover numbers of
~0.2 and ~0.24 < sec’', respectively (determined as an
average over the induction period) (Fig. 2a, b). Crude
media fractions containing the C-terminally Flag-tagged
proteins SRGXTI1-F and sRGXT2-F accumulated to levels
of approximately 12 and 6 mg protein * L™ with rather
similar turnover numbers of ~0.15 and ~0.3, respectively, as
obtained for the N-terminally Flag-tagged counterparts, i.e.
in this case demonstrating that a native C-terminus is not
required for the transferase activity.

The four soluble RGXT1 and RGXT?2 variants produced
high MW smears centred around 70 to 100 kDa, when
subjected to immunoblotting analysis (Fig. 2) suggesting
that the secreted proteins were hyper-glycosylated. The
proportion of recombinant protein, as determined by
immunoblotting, to total protein of the media fractions
were in the range of 35-55% for F-sRGXT1, sRGXT1-F,
F-sRGXT2 and sRGXT2-F, and more than 70% in case of
F-sRGXT3 (data not shown).

Optimization of activity

The high amount of e.g. sucrose and other nutrient
compounds in the media fractions often hampers product
analyses such as linkage and NMR analysis. We therefore
decided to perform crude purifications of the expressed
proteins. Two schemes were adopted, one being simple
dialysis and the other using a combination of (NH,4),SO4 in
concentrations that did not result in precipitation of the GT
in question, directly followed by purification on a phenyl
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V M D Y K D D D D K
Flag - Tag

Stop

cleavage sites that are cleaved during passage through the secretory
pathway, resulting in mature secreted N- or C-terminal Flag-tagged
protein. Abbreviations: «-ss, yeast & mating factor signal sequence;
GT, glycosyltransferase; TMD, transmembrane domain, Soluble
protein, SP

Sepharose column and subsequent dialysis. After pre-
incubation in 50% saturated (NH,4),SO,, all five proteins,
i.e. F-sRGXT1, sRGXT1-F, F-sRGXT2, sRGXT2-F and F-
sRGXT3, bound to phenyl Sepharose CL-4 by means of
hydrophobic interactions (Fig. 3a). Purification of crude
media on phenyl Sepharose resulted in a 2-3 fold concen-
tration of activity and 56-61% recovery for F-sRGXTI,
sRGXT1-F, F-sRGXT2 and sRGXT2-F while 190% appar-
ent yield and 8-fold concentration was achieved for F-
sRGXT3. Recoveries above 100% probably result from
interfering constituents of the spent Pichia medium since
simple dialysis of the crude media resulted in a 2 to 3 fold
increase in total activities for all enzymes. The soluble parts
of RGXT1, RGXT2 and RGXT?3 have three, four and seven
predicted N-glycosylation sites, respectively. F-sSRGXT3 was
produced as an extremely hyperglycosylated protein in P,
pastoris, as judged from the high MW smears on immuno-
blots [20]. The hyperglycosylation probably accounts for the
chromatographic properties of F-sSRGXT3 on phenyl Sepharose
from which it is more readily eluted.

Fig. 2 Immunobloting and estimated specific activity. The time course
of accumulation and specific activity of RGXT1 a and RGXT2 b during
growth of P. pastoris cultures was determined. P. pastoris transformants
were grown in 60 ml cultures under vigorous shaking (>=280 RPM) at
20°C and samples were collected each day for 5 days. For
immunoblotting 7.5l of the media fraction was applied on each lane
(see also the Material and Methods section). Predicted MW of F-
SRGXT1 & sRGXT1-F and F-sRGXT2 & sRGXT2-F: 36.534 D and
37.277 D, respectively. The amount of Flag-tagged protein in the media
was estimated using Flag-tagged Bovine Serum Albumin (Flag-BSA) as
reference (data not shown). Activity was measured using 0.5 M L-
fucose as acceptor and radiolabeled UDP-a-D-xylose as donor in
xylosyltransferase assays as described in the Material and Methods
section. Estimated specific activities (estimated as an average over the
induction period) in crude media fractions of F-sSRGXT1, sRGXT1-F,
F-sRGXT2 and sRGXT2-F were ~0.021, ~0.015, ~0.025, and
~0.03 mmol D-xylose-L-fucose dissacharide formed * mg prot” « h™!,
respectively. Bars and ¢ designate estimated concentrations of flag-
tagged RGXT protein and specific activities, respectively, at the various
time points
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Fig. 3 Concentration of activity A
and ESI-MS analysis. a. Con- i
centration of activity of RGXT1, 350 [0 Crude Medium
RGXT2 & RGXT3 by applying 1 [] pialysed Medium
i) simple dialysis of the media 3004
fractions or i) liquid chroma- - ' E\enyl Sepharose
tography on a Phenyl Sepharose £ 2507 — ]
CL4 column (binding of enzyme g 2004 ]
in 50% saturated (NH4),SOy4 to 8]
phenyl Sepharose columns fol- g 1504
lowed by elution of bound pro- 3 ]
tein and dialysis of eluate). Total 52 100
activities are given relative to ]
the total activity in one volume 507;_ t t r r
of crude media (100%), i.e. the
phenyl Sepharose concentrated F-sSRGXT1 F-sRGXT2 sRGXTi-F  SRGXT2-F = F-sRGXT3
activities have to be multiplied
with a factor of 4 for direct C
. . 187.14 201.19
comparison on a pl to pl basis. 1007 [fucose+NaJ+ 100 [methyl fucoside+Na]*+
Electrospray ionization mass 7 7
spectrometry (ESI-MS) of xylo- 95 95
syltransferase assays containing 50 hl 50 h
dialysed F-sSRGXT2 and 0.5 M ] J
L-fucose as acceptor b and 455 455
dialysed sSRGXT1-F and E ]
0.005 M Me «-L-fucoside as 403 40 [methyl xylosyl-fucoside+Na]+
acceptor ¢. The methyl a-D- . ] 333.18
xylosyl-a-L-fucoside disaccha- 35 35
ride product of m/z 333 1 1
([M+NaJ"), the «-D-xylosyl-«- 30 30
L-fucose disaccharide product of ] 418.18 ]
m/z 319 ([M+Na]") and sodium 257547 | 2019 | ) ficosesNar 25T g 4
acceptor adducts are indicated ] 17
on the chromatograms 20 351.21 20
3 \/ [xylosyl-fucose+Na]+ ]
15 15
. . [2 x methyl fucoside+Na]*
10 10 87936
. - 474.81
07 ‘H\;\”‘ 1‘&{”“‘!““1““‘ ‘r‘l‘”‘gjjjs 05
500 500
m/z m/z

The authenticity of the formed disaccharide product was
verified using electrospray ionization mass spectrometry
(ESI-MS). However, substantiation of disaccharide product
formed in xylosyltransferase assays containing the standard
amounts of free sugar (0.5 M L-fucose) by ESI-MS was
only feasible when the enzymes had either been subjected
to simple dialysis or purification on a phenyl Sepharose
column (Fig. 3b). Replacing L-fucose with the better
acceptor substrate methyl «-L-fucoside [19], enabled
lowering the acceptor-concentration 10 or 100 fold in the
assay, thus improving the signal to noise ratio significantly
(Fig. 3c).

Deglycosylation of hyper-glycosylated proteins

Placement of the Flag-tag in either the N- or C-terminus did
not appear to influence the glycosylation pattern of soluble

@ Springer

versions of RGXT1 and RGXT2. In order to investigate
whether the apparent hyper-glycosylation affected the
intrinsic enzymatic activities, enzyme mediated deglycosy-
lation of the two versions of RGXTI1 and of RGXT2 was
attempted. The four enzymes were incubated with Peptide:
N-glycanase and O-glycanase and subsequently analyzed
by immunoblotting and xylosyltransferase assays. Degly-
cosylation of the four proteins was successful at both 25°C
and 37°C resulting in shifts from high molecular smears to
single, well defined bands at sizes corresponding to the
predicted MWs, suggesting complete deglycosylation of the
proteins had taken place (Fig. 4). Deglycosylation resulted
in almost complete loss of xylosyltransferase activity of the
C-terminally tagged proteins whereas activity of the N-
terminally tagged proteins was not affected. Thus, de-
glycosylation did not, in any case, increase the inherent
activity of the enzymes.
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Fig. 4 Deglycosylation of F-sRGXT1, sRGXT1-F, F-sSRGXT2 and
sRGXT2-F. Immunoblotting analysis of N- and O-glycanase treat-
ments of F-sSRGXT1 (Lane 2), F-sSRGXT2 (Lane 4), sSRGXT1-F (Lane
6) and sRGXT2-F (Lane 8) and the untreated controls F-sRGXT1
(Lane 1), sSRGXT2-F (lane 3), sSRGXTI-F (Lane 5) and sRGXT2-F
(Lane 7). Activities of the corresponding xylosyltransferase assays
using 0.5 M L-fucose as acceptor substrate (activities are given
directly as counts per minute (CPM)) are depicted beneath. Only data
set for the 25°C incubations are shown

Divalent cations are required for enzymatic activity

RGXT1, RGXT2 and RGXT3 are classified into CAZY GT
family 77, and hence predicted to have a retaining mechanism of
transfer and to adopt the GT-A fold. GTs adopting the GT-A fold
have been reported to require a bound cation (Mn®" or Mg%)
for catalysis [29]. Most of the GTs adopting the GT-A fold
contain the so-called DxD motif (often seen as DxD or DD
[30]) that is implicated in binding of the nucleotide sugar [29].
In an earlier bioinformatics study, we identified the DxD motif
in silico in all three proteins [27]. In the present study the
predicted absolute requirement of a divalent cation, in this case
Mn?*, is demonstrated for the RGXT1 and RGXT2 enzymes
(Fig. 5). The RGXT1 and RGXT2 enzymes displayed
optimum between 5 and 7.5 mM Mn*" and retained more
than 70% of the maximal activity in the range between 2 to
20 mM Mn>". Substitution of MnCl, with MgCl, resulted in a
more than 3 fold reduction in activity (data not shown).

The four xylosyltransferase variants are active over a broad
pH spectrum

The four enzymes displayed mono-phasic pH dependent
curvatures when assayed in 25 mM ammonium formate in a

pH range between pH3 and pH11 (Fig. 6). The enzymes
retained between 50—60% of their optimal activities between
pHS5 and pH9, with the highest activity around pH7.

Comparison of RGXT1 and RGXT2 expressed in insect
cells versus in P. pastoris

Based upon semi-quantitative western analysis and coomassie
stained SDS-page gels with T7-tagged reference protein, T7-
tagged RGXTI1 and RGXT2 were estimated to be expressed
in baculovirus transfected insect sf9 cells at levels within the
range of 5-9 mg protein « L' medium (data not shown). On a
unit to unit basis (1 U=1 nmol substrate conversion * min™" «
ul medium™), the four proteins expressed in P. pastoris and
dialysed yielded similar activities (within the range 0.011 to
0.013 U) to RGXT1 and RGXT2 expressed in baculovirus
transfected insect sf9 cells.

Dialysis of sf9 derived media fractions containing
expressed RGXT1 and RGXT2 resulted in slightly reduced
activities.

>
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Fig. 5 Mn®>" dependence. F-sSRGXT1 & sRGXTI-F (A) and F-
sRGXT2 & sRGXT2-F b were expressed for 96 h at 20°C, and the
media fraction dialyzed as described in the Material and Methods
section. 5l of dialyzed media fractions were incubated in standard
xylosyltransferase assays containing 0.5 M L-fucose and the depicted
Mn?" concentrations (as MnCl,), which were incubated at 30°C for
1 h. Values represent means + SD (n=3)

@ Springer



1244

Glycoconj J (2009) 26:1235-1246

O F-sRGXT1
® sRGXT1-F
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Xylosyltransferase activity, % of maximal activity

Fig. 6 pH dependence. F-sSRGXT1 & sRGXTI-F a and F-sRGXT2 &
SRGXT2-F b were expressed for 96 h at 20°C, and the media fraction
dialyzed as described in the Material and Methods section. 5pul of
dialyzed media fractions were incubated in standard XyIT assays at the
depicted pHs, which were incubated at 30°C for 1 h. Values represent
means + SD (n=2)

Discussion

More than 200 type I GTs are believed to participate in the
synthesis of the unique and complex plant CW, and
although heterologous expression is a key element in the
assignment of function, successful heterologous expression
and demonstration of enzymatic activity of plant CW GTs
are rare events (Cf. e.g. recent 11th Cell Wall Meeting,
Physiol Plant. 130). One prerequisite for advancing this
field is identification and development of suitable expres-
sion hosts and schemes. In the present study, we investi-
gated P. pastoris as host system for expression of two
retaining plant CW xylosyltransferases, RGXT1 and
RGXT2, and using this host system we have made a first
basic characterization of the enzymes and provide a simple
straightforward framework for how expression and eluci-
dation of enzymatic activity may be addressed in the
attempt to assign function to a given GT.

@ Springer

By introducing subtle modifications in the commercially
available vector pPiczaA, constructs enabling expression of
secreted N- and C-terminal Flag-tagged fusion-proteins
were prepared. In the course of a 5 day induction period
at 20°C, both N- and C-terminal Flag-tagged RGXT1 and
RGXT2 were shown to accumulate in ample amounts with
somewhat constant catalytic turnover numbers in the range
of 0.15 t0 0.3 « sec”, thus suggesting that the enzymes were
relatively stable in the media fractions under the conditions
used for expression. The relatively low turnover rates may
result from sub-optimal assay conditions of the free sugar
assay and inhibitory substances in untreated media frac-
tions. While enzymatic activity of the four RGXT1 and
RGXT2 variants was found to increase 2-3 fold upon
simple dialysis of the media, phenyl Sepharose mediated
purification of F-sRGXT3 resulted in a ca. 8 fold increase
in activity when compared on a pl to pl basis. Importantly,
these simple extra rough purification steps may determine
whether margin activities in sub-optimal general assays,
such as the free-sugar assay, are detected. Simple dialysis
and phenyl sepharose mediated purification of the media
fractions were also found to enable direct verification of the
product formed in crude assay mixtures using ESI-MS, thus
adding a confirmatory layer to the free sugar assay.

For many mammalian GTs a native C-terminus has been
shown to be absolutely required for activity [31-33], a
requirement that was confirmed for the Golgi localized f3-
1,2-XylT from A. thaliana, which is involved in protein N-
glycosylation [34]. Here we demonstrate that addition of the
apparent non-disruptive Flag-tag to the C-terminus, possess-
ing the catalytic domain, of the soluble part of RGXT1 and
RGXT?2 does not appear to influence enzyme activity.

The migration patterns of RGXT1, RGXT2 and RGXT3
on denaturing SDS-PAGE gels, suggest that the enzymes
are hyper-glycosylated, and that the predicted number of N-
glycosylation sites in the proteins correlate with the degree
of glycosylation. In order to investigate whether the
enzymatic activity might be hampered by the hyper-
glycosylation, the enzymes were subjected to enzyme
mediated deglycosylation. Loss of activity following
deglycosylation of Pichia-expressed enzymes is not unusual
(see e.g. [35]). The enzymatic activity after deglycosylation
was almost retained for N-terminal tagged RGXT1 and
RGXT2, however, demonstrating that activity can be
retained and that glycosylation of the two enzymes is not
needed for activity in vitro.

Previously, the 4. thaliana RGXT1 and RGXT2 were
predicted to adopt the GT-A fold [27]. The dependence of
Mn*" or, less efficiently, Mg®" is common for GTs
especially of the GT-A (SpsA) superfamily [29, 36]. The
absolute requirement of Mn®" with a somewhat broad
optimum in the range between 2 and 20 mM was
demonstrated for all of the enzymes tested, thus in
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magnitudes exceeding the concentration of Mn”>* in the
Golgi vesicles, which is expected to be in the sub
millimolar range. A similar range was observed for another
member of the GT77-family, the Dictyostelium cytosolic
UDP-Galactose:Fucoside «-1,3-Galactosyltransferase [37].

Expression of RGXT1 and RGXT2 in P, pastoris and in
another commonly used system the baculovirus sf9 cells,
yielded similar activities with estimated turnover numbers
within the same range thus also in this respect making P,
pastoris along with the overall expression and initial
characterisation scheme presented here, a strong competi-
tive host candidate for expression of plant GTs.
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